Building robust
embedded
systems

Amit Kucheria
Pune Kernel Meetup
(07/01/2017)

Examples of embedded systems

Vending machines
Medical devices
Elevators

Printers

Cameras

Airbags

Routers

Autonomous Vehicles
Robots

Industrial automation
Voting machines
Amusement rides
Railway signalling

Mobile phones (?)
TVs (?)
Airplane Fly-by-wire (?)

About

e Me
o Linux user since 1995
o Linux kernel developer since 2000
o Worked for Nokia, Canonical (Ubuntu), Linaro

o Worked on wireless routers, mobile phones, tablets, laptops

e This Talk
o Touches upon several topics to pay attention to
o Target is to raise the bar for MVP
o Not about Linux in particular

Computer systems

Inputs Outputs

Design Considerations (Process view)

Reliability

Safety

Availability
Maintainability
Verification & Validation

Design Considerations (Engg view)

Responsiveness

Safety-critical?

Longevity

Ease of servicing

Software updates

System Health Monitoring and Recovery
Security

Correctness

Certification

Pick two

Patent it!

A detour

Real-time systems...

https://www.ece.cmu.edu/~ece749/docs/Misconceptions-Stankovic.pdf

...are about speed

...are about predictability

...can be designed by playing with
process priority

What's your score?

...are about speed
...are about predictability

...can be designed by playing
with process priority

X Speed is a byproduct and not
the main goal

Bounding the worst case
latency is an important goal

X Study deadline scheduling

Responsiveness (capacity planning)

e Compute capacity needed
o (Size of input * number of inputs per second * processing time per input) + spare capacity
e Worst-case acceptable latency (real-time)

e Graceful degradation?

o Ratelimiting the number of clients

o System partitioning so that critical system functionality is unaffected

o In mission-critical systems, it points to a failure in requirements gathering
e Example of graceful degradation

o Websites that support that latest W3C standards all the way down to text browsers
o Apache graceful restart allows old connections to finish before restarting them

Safety-critical?

e Misbehaviour can result in danger to human lives, damage to equipment or
environmental harm
e Examples of bad software:

o Toyota firmware causing
o at the National Oncology Institute in Panama

e Extreme solutions for reliable designs (Failure is not an option)

o Planes usually have 3 independent computer systems processing all data independently and
voting. See

° to write safety-critical software

https://www.edn.com/design/automotive/4423428/Toyota-s-killer-firmware--Bad-design-and-its-consequences
https://www.healthcareguy.com/2005/11/09/two-of-historys-worst-software-bugs-reported-to-be-in-medical-software/
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance
https://github.com/stanislaw/awesome-safety-critical

Longevity

e Flash memory:
o Long-term: Will it survive for 15-50 years?
m Flash wear-leveling
m Minimise writes (1K-10K erases per block on consumer-grade flash)
e Temperature
o Long-term: Extreme temperatures reduces life of chips
o Short-term: System reboots
e Sourcing of parts
o Long-term: Can you replace a unit with an identical one in 5 years?

Ease of servicing

Remote monitoring

Remote debugging

Ability to reproduce problem locally?

Cost of sending an engineer to a remote site
Redundancy in HW

Software updates

e Ability to push software updates safely
o Regular security fixes
o Periodic bug fixes
o Optional feature enhancements

e |[fyou're not planning for this, your product will get ignored
e Don't create backdoors for updates, use standard mechanisms

e Good examples:
o Tesla via a software update

e Examples of terrible software:
o TP Link repeaters uses ~700Mb/month to

http://www.plugincars.com/tesla-responds-fire-ground-clearance-software-update-128910.html
https://www.ctrl.blog/entry/tplink-aggressive-ntp

System Health monitoring and Recovery

e Out of file descriptors
o Rlimits ()
Out of memory
Out of flash space
Network outage (tricky one!)
Incorrect input
Incorrect output
Is a reboot your only recovery plan?

http://connect.linaro.org/resource/sfo17/sfo17-114/

Security

e Secure boot
o Only software signed with known keys is allowed to be run

e Network security
o Unencrypted data sent over network
o Open ports (webservers)
o Cleverly crafted packets (ping of death)

e Physical security

o Most bets are off if someone has physical access to the HW
o ..butyou can make it a bit tedious for the casual hacker
o Trivia: Hacking

http://tenwatts.blogspot.in/2015/09/hacking-deep-sea-cables.html

Correctness

e Correct outputin adversity
o Environmental
m E.g. Adjust radio settings (baudrate, channel) in case of jamming
o Network outage
m E.g. Ad-hoc routing protocols
o HW failure
m E.g. EDAC RAM, Hard disk SM.A.R.T.
e Data conversion
o Ariane 5 Flight 501 Failure due to data conversion errorin

o due to two different system of units used
e Formal methods to generate proofs

http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html
https://en.wikipedia.org/wiki/Mars_Climate_Orbiter

Certification

e Medical devices

e Hostile environments
o Temperature, Pressure, Vibration
o Water and Dust (IP-rating)
e Grades
o Milspec
o Commercial-grade
o Consumer-grade

Why Linux?

Architecture support (more than any other OS)
Royalty-free

Tons of device drivers

Source code makes it easy to modify

Allows graceful degradation by dropping features

Runs on everything from micro-controllers to mainframes

Size

Linux too big for micro-controllers

Memory fFootprint < 1Mb

Flash footprint < 1Mb

Minimising language runtimes

uClibc, newlibc, dietlibc

Busybox

Openembedded (OE) custom distribution
cramfs/squashfs: read-only, compressed

ubifs/jffs2: compressed filesystems for flash, wear-leveling

Miscellaneous Tips

Watchdog (SW / HW)
S man setrlimit

to probe for weaknesses
PoE

Defensive programming
o Using a subset of the programming language (e.g. avoid dynamic allocation and pointers)
o Become aware of pitfalls of using gets(), strcpy()

http://kernel.ubuntu.com/git/cking/stress-ng.git/

uControllers

Zephyr

FreeRTOS

Apache Mynewt

Pick one, doesn’t matter at this point, IMO

