
Building robust
embedded

systems
Amit Kucheria

Pune Kernel Meetup
(07/01/2017)

Examples of embedded systems
● Vending machines
● Medical devices
● Elevators
● Printers
● Cameras
● Airbags
● Routers
● Autonomous Vehicles
● Robots
● Industrial automation
● Voting machines
● Amusement rides
● Railway signalling

● Mobile phones (?)
● TVs (?)
● Airplane Fly-by-wire (?)

About
● Me

○ Linux user since 1995
○ Linux kernel developer since 2000
○ Worked for Nokia, Canonical (Ubuntu), Linaro
○ Worked on wireless routers, mobile phones, tablets, laptops

● This Talk
○ Touches upon several topics to pay attention to
○ Target is to raise the bar for MVP
○ Not about Linux in particular

Computer systems

ProcessingInputs Outputs

Design Considerations (Process view)
● Reliability
● Safety
● Availability
● Maintainability
● Verification & Validation

Design Considerations (Engg view)
● Responsiveness
● Safety-critical?
● Longevity
● Ease of servicing
● Software updates
● System Health Monitoring and Recovery
● Security
● Correctness
● Certification

Pick two

A detour

Real-time systems...

https://www.ece.cmu.edu/~ece749/docs/Misconceptions-Stankovic.pdf

...are about speed

...are about predictability

...can be designed by playing with
process priority

What’s your score?

...are about speed ✘ Speed is a byproduct and not
the main goal

...are about predictability ✔ Bounding the worst case
latency is an important goal

...can be designed by playing
with process priority

✘ Study deadline scheduling

Responsiveness (capacity planning)
● Compute capacity needed

○ (Size of input * number of inputs per second * processing time per input) + spare capacity

● Worst-case acceptable latency (real-time)
● Graceful degradation?

○ Ratelimiting the number of clients
○ System partitioning so that critical system functionality is unaffected
○ In mission-critical systems, it points to a failure in requirements gathering

● Example of graceful degradation
○ Websites that support that latest W3C standards all the way down to text browsers
○ Apache graceful restart allows old connections to finish before restarting them

Safety-critical?
● Misbehaviour can result in danger to human lives, damage to equipment or

environmental harm
● Examples of bad software:

○ Toyota firmware causing unintended acceleration leading to death
○ Miscalculated Radiation Doses at the National Oncology Institute in Panama

● Extreme solutions for reliable designs (Failure is not an option)
○ Planes usually have 3 independent computer systems processing all data independently and

voting. See Byzantine Fault Tolerance

● Resources to write safety-critical software

https://www.edn.com/design/automotive/4423428/Toyota-s-killer-firmware--Bad-design-and-its-consequences
https://www.healthcareguy.com/2005/11/09/two-of-historys-worst-software-bugs-reported-to-be-in-medical-software/
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance
https://github.com/stanislaw/awesome-safety-critical

Longevity
● Flash memory:

○ Long-term: Will it survive for 15-50 years?
■ Flash wear-leveling
■ Minimise writes (1K-10K erases per block on consumer-grade flash)

● Temperature
○ Long-term: Extreme temperatures reduces life of chips
○ Short-term: System reboots

● Sourcing of parts
○ Long-term: Can you replace a unit with an identical one in 5 years?

Ease of servicing
● Remote monitoring
● Remote debugging
● Ability to reproduce problem locally?
● Cost of sending an engineer to a remote site
● Redundancy in HW

Software updates
● Ability to push software updates safely

○ Regular security fixes
○ Periodic bug fixes
○ Optional feature enhancements

● If you’re not planning for this, your product will get ignored
● Don’t create backdoors for updates, use standard mechanisms
● Good examples:

○ Tesla changes ground clearance via a software update

● Examples of terrible software:
○ TP Link repeaters uses ~700Mb/month to test connectivity

http://www.plugincars.com/tesla-responds-fire-ground-clearance-software-update-128910.html
https://www.ctrl.blog/entry/tplink-aggressive-ntp

System Health monitoring and Recovery
● Out of file descriptors

○ Rlimits (http://connect.linaro.org/resource/sfo17/sfo17-114/)
● Out of memory
● Out of flash space
● Network outage (tricky one!)
● Incorrect input
● Incorrect output
● Is a reboot your only recovery plan?

http://connect.linaro.org/resource/sfo17/sfo17-114/

Security
● Secure boot

○ Only software signed with known keys is allowed to be run

● Network security
○ Unencrypted data sent over network
○ Open ports (webservers)
○ Cleverly crafted packets (ping of death)

● Physical security
○ Most bets are off if someone has physical access to the HW
○ ...but you can make it a bit tedious for the casual hacker
○ Trivia: Hacking deep sea cables

http://tenwatts.blogspot.in/2015/09/hacking-deep-sea-cables.html

Correctness
● Correct output in adversity

○ Environmental
■ E.g. Adjust radio settings (baudrate, channel) in case of jamming

○ Network outage
■ E.g. Ad-hoc routing protocols

○ HW failure
■ E.g. EDAC RAM, Hard disk S.M.A.R.T.

● Data conversion
○ Ariane 5 Flight 501 failure due to data conversion error in 64-bit floating point to 16-bit

signed integer value
○ Failure of Mars Climate Orbiter due to two different system of units used

● Formal methods to generate proofs

http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html
https://en.wikipedia.org/wiki/Mars_Climate_Orbiter

Certification
● Medical devices
● Hostile environments

○ Temperature, Pressure, Vibration
○ Water and Dust (IP-rating)

● Grades
○ Milspec
○ Commercial-grade
○ Consumer-grade

Why Linux?
● Architecture support (more than any other OS)
● Royalty-free
● Tons of device drivers
● Source code makes it easy to modify
● Allows graceful degradation by dropping features
● Runs on everything from micro-controllers to mainframes

Size
● Linux too big for micro-controllers
● Memory footprint < 1Mb
● Flash footprint < 1Mb
● Minimising language runtimes
● uClibc, newlibc, dietlibc
● Busybox
● Openembedded (OE) custom distribution
● cramfs/squashfs: read-only, compressed
● ubifs/jffs2: compressed filesystems for flash, wear-leveling

Miscellaneous Tips
● Watchdog (SW / HW)
● $ man setrlimit
● Stress-ng to probe for weaknesses
● PoE
● Defensive programming

○ Using a subset of the programming language (e.g. avoid dynamic allocation and pointers)
○ Become aware of pitfalls of using gets(), strcpy()

http://kernel.ubuntu.com/git/cking/stress-ng.git/

uControllers
● Zephyr
● FreeRTOS
● Apache Mynewt
● Pick one, doesn’t matter at this point, IMO

La Fin

